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Abstract. This paper presents a description of application of stochastic weights 

in a neuron, problem solved through the adaptive estimation achieved with 

dynamical combination between the identification and estimation; having an 

adaptive structure that updates the estimated parameters into the integrated filter. 

The weights are dynamically adjusted in the neuron based on stochastic gradient, 

affecting the neuronal performance allowing that its response converges to the 

reference signal. In addition, the error is applied in identification as an innovative 

gain adjusting the neuron in its inputs and consequently its dendrites signals that 

are applied into gradient filter adjusting the neuron weights in accordance with 

the desired signal requirement. Such that the gradient estimation is built based on 

the Black-box scheme with unknown internal weights. All simulations were 

developed using Matlab® software. 

Keywords: Estimation, stochastic systems, neural net, digital filter, 

identification. 

1 Introduction 

An artificial neural net is a computational model that imitates the biological actions: 

observing that the neurons adapt their gains using the learning process as it occurs in 

the brain or neural sensor subsystems. Different effects depend on the output stimuli 

(Nikola, 1996) (Medel, 2008). So, the artificial net considers the weights adaptation as 

a requirement, in accordance with the reference signal and the stimuli of the inputs.  

The neuron maintains an electrical potential interval from 35 × 10−3  to 65 ×
10−3volts; but when a neuron is fired, an electrical impulse is increased; this is an 

electric energy generated by chemical effects, releasing an electrical potential from 

90 × 10−3 to  110 × 10−3 volts. This impulse through the neuron is transmitted from 

5 × 10−1 to 1 × 102  metres per second and is distributed on average in a 1 ×

139 Research in Computing Science 100 (2015)pp. 139–147; rec. 2015-06-19; acc. 2015-10-03

mailto:karen_ali320@hotmail.com
mailto:mtza79@yahoo.com.mx
mailto:jmedeljj@yahoo.com


10−3 second. In addition, the fast repetition rate corresponds on average to 10 × 10−3 

seconds per firing. A computer, where signals travel on average at 2.0 × 108
𝑚

𝑠
  

(electrical speed energy in a wire is 0.7 faster than in air), may repeat an impulse each 

10 × 10−9seconds. So, the computer device has in average two thousand times more 

speed in signal transmission and a thousand times in the fire signal repetition with 

respect to natural neuron action (Passion, 1998), because it uses the solid state instead 

of chemical reactions. But, for example, the main advantage of the brain with respect 

to other electronic devices is the possibility of "self-programming" with the changes of 

external stimuli, known as “adaptability”. In other words, it can learn dynamically and 

in variable conditions. Naturally, the brain neurons change their response to new 

stimuli, having similar responses to similar events. The brain adaptability corresponds 

to survival actions, while a device that just accomplishes a sequence of commands. 

1.1 Neural Network Structure  

The computational neural net structures are based on biological neural configurations. 

The basic neural net is based in a neuron model, shown in Figure 1, consisting of 

Multiple Inputs and a Single Output (MISO form).  

 

 

Fig. 1. Neuron model. 

Each input is modified by a weight, which multiplies the input values. A neuron 

combines dendrite weight inputs and if the soma biological actions exceed a threshold, 

then the nucleus (in a biological sense) activates a function and determines its output 

answer. In a computational device, as shown in Figure 2, a behavioural additional 

condition has the answer close to the real neuron actions (Rajen, 2006). 

 

Fig. 2. Neuron device computational model. 

 

       

                    

𝑢1 

𝑢2 

𝑢𝑁  

𝑦𝑗
𝑛  
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Meanwhile, understanding how an individual neuron operates, many researches 

generate the way neurons organize themselves and the mechanisms used by neuron 

arrays to adapt their behaviour to external bounded stimuli. There are a huge number 

of experimental neural nets, and actually, laboratories and researchers continue building 

new neural net configurations in order to develop intelligent and autonomous systems. 

The common computational neural net used is named as a back-propagation network 

and is characterized with a mathematical structure model that knows its behavioural 

stability conditions (bounded inputs and bounded output, BIBO conditions). 

Intuitively it is built taking a number of neurons and arrays them forming a layer. A 

layer is formed having all inputs and nodes interconnected with others nodes, but not 

both within the same node. A layer finishes with a node connected with a succeeding 

layer or outputs giving the answer. The multiple layers are arrayed as an input layer, 

multiple intermediate layers and an output layer is shown in Figure 3, where the 

intermediate layers do not have inputs or outputs to the external world and are called 

hidden layers (Marcek, 2004).  

Back-propagation neural networks are usually fully connected to improve the 

learning process. This means that each neuron is connected to every output from the 

preceding layer. 

 

Fig. 3. MISO Back-propagation Network with three layers. 

The layers are described as: input, distributing signals from the external world; 

hidden, categorizing the signals; and the output, collecting all features detected and 

producing a response. However, the problem of the layers has many descriptions 

considering the set of optimal weights. 

1.2 Neural Network Operation 

The output of each neuron is a function of its inputs and weights, with a layer as 

described recursively in (1) (Huang, 2006). 

 𝑊𝑗
𝑁 = 𝑤𝑗

𝑛𝑢𝑛 +𝑊𝑗
𝑁−1, (1) 

where the basic function has the form 𝑊𝑗
𝑁−1 = ∑ 𝑤𝑗

𝑛𝑢𝑛
𝑁−1
𝑛=1   . 

The output neural net answer is a convolution operation, shown in (2). 
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 𝑌𝑗
𝑁 = (𝐹 ∘ 𝑊)𝑗

𝑁. (2) 

The 𝑊𝑗
𝑁 value is convoluted with a threshold value giving an approximate biological 

neural net answer; but in a computational sense, it is active considering a 𝑡𝑗
𝑁 known as 

an activation function. The activation function usually is the sigmoid function. 

The output vector answer  𝑌𝑗
𝑁 is the neural net response, observing that the threshold 

function corresponds to biological electrical potential of 90 × 10−3  to 110 ×
10−3 𝑣𝑜𝑙𝑡𝑠 needed in synopsis operations. 

The biological or computational fire answers correspond to threshold conditions that 

accomplish the excitation functions generating an answer giving many inputs. 

Generally, the weights are selected intuitively in the first step; but with adaptive 

considerations, they can be adjusted to seek the desired answer (García, 2008). 

2 Net Adapting its Weights Using Stochastic Filtering  

Adaptation in a neural net means adjusting its weights with a law action, seeking the 

convergence to the output desired. The difference between the desired and actual 

response is known as convergence error, defined as (3) and shown in figure 4.   

 𝑒𝑗
𝑁 = �̂�𝑗

𝑁 − 𝑌𝑗
𝑁 . (3)  

The filtering action could be a sliding mode, proportional gain in its weight and other 

non-linear models that allow the neural net convers to the desired answer with respect 

to the input set, but instead of it, in this paper we propose the identification technique 

shown in figure 4, that adjusts the inputs, predicting how many gain is required to 

minimize the inputs with respect to the desired reference signal. 

 

Fig. 4. Neural weights adjustment using an identification action. 

The adaptive back-propagation procedure is described in (4): 

 𝑢𝑗
𝑛′ = 𝑢𝑛 − 𝐿𝑗

𝑛, (4) 
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where  𝐿𝑗
𝑛 corresponds to identification action considered by neural net designer. 

Now, applying the concept considered above with respect to neural net, it adjusts its 

weights using stochastic estimation giving a great advantage over traditional inference 

weights assignation heuristically. 

The neural net has adaptive weights based on an identification with its estimation, 

associating the output filter information with the neuron answer (Huang, 2006), 

building the control volume described as 𝑇𝑁 = {(𝑦𝑗
𝑛 , �̂�𝑗

𝑛)}
𝑛−1,𝑁̅̅ ̅̅ ̅

⊆ 𝑅2 where a variant 

scheme has the form 𝐺𝑁: (𝑌𝑗
𝑁 × �̂�𝑗

𝑁) × 𝑇 → {((𝑦𝑗
𝑛 , �̂�𝑗

𝑛), 𝜏)}|
𝑛−1

𝑁

⊆ 𝑅3  (Margaliot, 

2000), with dynamical adjusted moments (Gustafsson, 2001) in accordance with the 

reference  previously defined in a distribution sense.  

The neuro-stochastic filter is based on the back-propagation algorithm, because its 

weights have a dynamic actualization (Ali, 2003) (Amble, 1987) (Haykin, 1996) with 

different levels for each interval iteration (Huang, 2006), using the error described 

partially as 𝑒𝑗
𝑛  ∈ 𝑅  defined as 𝑒𝑗

𝑛 ≔ �̂�𝑗
𝑛 − 𝑦𝑗

𝑛  , considering that its distribution 

function (Marcek, 2004) (García, 2008) is bounded and the statistical results have 

stationary conditions. Filter is shown in Figure 5, using the estimation weights (Passino, 

1998) (Medel, 2008). 

 

Fig. 5. Neuro-stochastic Digital Filter Process. 

The error (|𝑒𝑗
𝑖|) has an interval limit [0, 𝜀] and 𝜀 is described as a positive value with 

inf{ |𝑒𝑗
𝑖| ∶ 𝑖, 𝑗 ∈ 𝑍+}

𝑛→∞
→   𝛿𝑗

𝑛 (Morales, 2002). 

Stochastic filter applied into neuron considers the concepts described in (Abraham, 

1991) and (García, 2011), having the elements needed in its basic description: back 

propagation neural net scheme, adaptive weights considering the estimation and 

identification, convergence answer, the error as an innovation process 𝑒𝑗
𝑖  with its 

bounded probability moments, in a metric sense, [19]. Activation function is the stage 

where the answer filter is transformed into a natural answer approximating to minimal 

convergence error region, and neuro-stochastic filter has a natural actualization 
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obtaining its weights dynamically based on second probability moment into the basic 

estimation action (5) considering de gradient description. 

 𝐽𝑛 =
1

𝑛2
[𝑒𝑗
𝑛2 + (𝑛 − 1)𝐽𝑛−1], ∈ 𝑅[0,1)  𝑛 ∈ 𝑍+. (5) 

The functional error 𝐽𝑛 has an exponential convergence and stationary conditions if 

the weights set into filter established a stationary reference lim
𝑛→∞

|𝐽𝑛|  → 𝑚, considering 

that 0 < {|𝑒𝑗
i|} < 1 and (6). 

 𝐽𝑚𝑖𝑛 = inf
𝑚
{min 𝐽(𝑦𝑖−0

𝑗
, �̂�𝑗
𝑖  )}

𝑛
. (6) 

Considering the gradient estimation in accordance with the desired signal and filter 

action, firstly, the filter process adjust the inputs, and these are applied into the gradient 

estimation adjusting the weights and generating in the same time the adaptive process 

guarantying the convergence rate (Rajen, 2006). Then, the weights 

{𝑤𝑗
𝑖}
𝑖=1,𝑛̅̅̅̅̅,𝑗=1,𝑚̅̅ ̅̅ ̅,

, 𝑛,𝑚 ∈ 𝑍+  affect the neuron elements and consequently will give the 

correct answer �̂�(𝑘) (Ash, 1970), with MISO (Multi Inputs Single Output) properties. 

It means that (5) without concurrence has the form 𝐽𝑛 = 𝐄{𝑒𝑗
𝑛}
2
=, ∈ 𝑅[0,1)  𝑛 ∈ 𝑍+, 

with 𝑒𝑗
𝑛 = 𝑦𝑗

𝑛 − �̂�𝑗
𝑛 𝑎𝑛𝑑  𝑦𝑗

𝑛 = 𝑊𝑦𝑗
𝑛−1 + 𝐵𝑢𝑗

𝑛′. Such that, the functional error with 

symmetric conditions has the form with explicit output results as 𝐽𝑛 = 𝐄 {𝑊2𝑦𝑗
(𝑛−1)2 +

𝐵2𝑢𝑗
𝑛′2 + �̂�𝑗

𝑛2 − 2(𝑊𝑦𝑗
𝑛−1 + 𝐵𝑢𝑗

𝑛′)�̂�𝑗
𝑛}. The gradient of 𝐽𝑛, allows to have the neuron 

weights �̂�𝑗
𝑛 = (𝑬{𝑦𝑗

𝑛−1�̂�𝑗
𝑛}) (𝑬 {𝑦𝑗

(𝑛−1)2})
−1

. 

2.1 Weight Properties 

The filter weights estimation uses the adaptive criterion, in order to adjust them 

dynamically, considering the stochastic properties and bounding each of them using a 

transition function maintaining the stability. The weights set {𝑤𝑗
𝑖}
𝑖=1,𝑛̅̅̅̅̅,𝑗=1,𝑚̅̅ ̅̅ ̅,

, 𝑛,𝑚 ∈

𝑍+ , in each layer accomplishes the condition ∑ 𝑤𝑗
𝑖𝑛

𝑖=1 ≤ 1,  without losing the 

Transition Function (TF) (García, 2008): 

i. Each weight has a Dynamic Transition Function (DTF): 1) ln(Φ𝑗
𝑖) <  ∞ ,      

2)ln(Φ𝑗
𝑖) > 0, 3)ln(Φ𝑗

𝑖) 𝜏−1 < 1. 

ii. The weight is described using the Transition Function (TF) in 𝑤𝑗
1−𝑖0 =

ln(Φ𝑗
𝑖) (ln(Φ𝑗

𝑖)(𝑖 − 𝑖0))
−1

. 

iii. The velocity changes are limited inside the transition function  ln(Φ𝑗
𝑖) ≤

ln(Φ𝑗
𝑖0)(𝑖 − 𝑖0)

𝑇  , ln(Φ𝑗
𝑖) ≤ ln(Φ𝑗

𝑖−1) (𝑖 − 1)𝑇. 

The transition functions sum is bounded in each layer  0 ≤ |∑ Φ𝑗
𝑖𝑛

𝑖−1 | ≤  1 . In 

accordance with the value of Φ𝑗
𝑖0 , the weights are bounded accomplishing with 𝑤𝑗

1−𝑖0 ≤

lnΦ𝑗
𝑖0  . 
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The identifier described as 𝑥�̂� = 𝑤𝑗
i(𝑖 − 𝑖0) �̂�𝑖−1 + 𝐾𝑖�̂�

𝑖 considering from (i) to (iii), 

where 𝐾𝑖 is the function gain and is a functional identification error, defined by the 

second probability moment (5), �̂�𝑖  is the innovation process with {�̂�𝑖}  ⊆

𝑁 (𝜇�̂�𝑖 , 𝜎�̂�𝑖
2 < ∞). 

3 Results 

The MISO stochastic filter considers the digital filter structure (Haykin, 1996) with the 

transition matrix bounded in accordance with the functional error criterion (Ash, 1970). 

The soft system (statistic in variance sense) considers the evolution times bounded and 

the processor performance at 𝜏 intervals with an average evolution time of 4 × 10−3 
sec ± 2 × 10−5sec.  This section uses the first order difference discrete ARMA (1, 1) 

model (7) representing a reference system. 

 𝑥𝑖+1 = 𝑊𝑖𝑥
𝑖 + 𝜔𝑖. (7) 

And the output described as (8): 

 𝑦𝑖 = 𝐶𝑥𝑖 . (8) 

where 𝑦𝑖  ∈ 𝑅,𝑊𝑖  ∈ 𝑅[0,1)
[𝑛×𝑛], 𝒙𝑖 , 𝝎𝑖𝜖𝑅[𝑛×1], 𝐶 = 𝐼 . 𝑥i is the internal states vector, 𝑊𝑖 is 

the parameters matrix, {𝜔𝑖} ⊆ 𝑁(𝜇𝜔𝑖 , 𝜎𝜔𝑖
2 < ∞) is the vector  noise into the system, yi 

is the reference vector and �̂�𝑖 is the desired system signal. The filter process established 

the stochastic weights adjusted in agreement to the functional error convergence. Figure 

6 describes the reference signal and its identification without knowing the internal 

matrix weights considering the estimation results  �̂�j
n . Figure 7 shows both 

overlapping densities considering the same time interval. Figure 8 shows the evolution 

functional error described in (5). 

 

  

 

Fig. 6.  Neuro signal 𝑌𝑗
𝑛 

and its identification �̂�𝑗
𝑛. 

Fig. 7. Overlapping 𝑦𝑗
𝑛 

and �̂�𝑗
𝑛 densities.  

Fig. 8. Functional error (5). 

The digital filter time evolution response was less than the reference process time 

state change, proposed with a value of 5 × 10−2sec, and is delimited by the processor, 

considered in (ŷ𝑗
𝑛 ). The convergence time is 862 × 10−4  sec, described in (Medel, 

2008). 
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4 Conclusion 

Neural net in identification sense, considered the adaptation process adjusting the 

weights dynamically using the estimation condition. Nevertheless, in many cases, these 

applications generate convergence problems because the gains increase the neural net 

weights positive or negatively without converge to desired value. In the black-box 

computational scheme the internal weights are known; but in real conditions it is 

impossible and only has a desired or objective answer, adjusting in some sense to their 

dynamically needing estimation process with smooth movements with respect to 

functional and identification error (5). Therefore, an option considered to estimate these 

in the new environmental circumstances, is based on gradient structure without losing 

the stability with respect to a reference system and on the Hausdorff condition, where 

the filter converge to the desired output system in distribution sense. 
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